

How will Rapid Diagnostics Revolutionise Healthcare in the Coming 5-10 years?

Rosanna W Peeling Professor and Chair, Diagnostic Research Director, International Diagnostics Centre

www.idx-dx.org

Plan of Presentation

- Why do we need rapid diagnostics?
 - Epidemic preparedness
 - Antimicrobial resistance
 - Improve access and health system efficiencies towards universal health care
- Performance and operational characteristics of rapid diagnostics: access vs accuracy
- Diagnostics to revolutionise health care will require the convergence of:
 - biotechnology advances
 - digital technology
 - artificial intelligence and machine learning
 - Faster regulatory approval and policy development process
- The future is in our hands

Global Health Emergencies: Viral epidemics - more frequent and severe

Preparing for the Inevitable

- As part of the R&D Blueprint for Actions to Prevent Epidemics, WHO has called for ideas for platform technologies to improve research and development preparedness against a set of priority infectious disease threats:
 - haemorrhagic fevers: Crimean-Congo haemorrhagic fever, Ebola and Marburg viruses, Lassa fever
 - Middle East respiratory syndrome coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS)
 - Nipah and henipaviral diseases
 - Rift Valley fever (RVF)
 - Zika
 - Disease X for any unknown pathogen of epidemic potential

https://www.who.int/blueprint/priority-diseases/en/

WHO: No action today, no cure tomorrow

In 2016, 1 person dies from AMR every 45 seconds

According to the O'Neill Review on AMR:

- If no action is taken, by 2050:
 - 1 person dies from AMR every 3 seconds
 - AMR will cost 100 trillion USD
 - many infections will become incurable threaten the practice of modern medicine

https://amr-review.org/

Lives lost/year attributable to Antimicrobial Resistance by 2050

(Source: European Commission)

Excessive Use of Antimicrobials has contributed to AMR

Urgent need for rapid diagnostics to guide appropriate use of antibiotics for common clinical syndromes:

- fever, pneumonia
- diarrheal illness
- urinary tract infections
- sexually transmitted infections
- sepsis

Out of 40m people who get given antibiotics for respiratory issues, annually in the US:

27m get antibiotics unnecessarily 13m who need antibiotics get them

Data extracted from: Shapiro et al. Antibiotic prescribing for adults in ambulatory care in the USA, 2007-9. J Antimicrobial Chemoth 2013.

LONDON SCHOOL HYGIENE &TROPICAL MEDICINE

Diagnostic tests or test systems are needed to:

- improve patient management by more targeted use of antibiotics for common syndromes
- Enable AMR surveillance
- Assess the impact of AMR interventions

Incentivising Rapid Test Development:

- The UK Longitude Prize: £ 10 million
- The EC Horizon 2020 Prize: 1 million euros
- The US NIH AMR Prize of up to \$ 20 million

Longitude Prize, £10 million

THE CHALLENGE: REDUCE THE USE OF ANTIBIOTICS

How can we prevent the rise of resistance to antibiotics?

So far, 239 groups have registered and 13 Discovery awards have been given as seed funding

LONGITUDE PRIZE WHAT KIND OF TEST COULD WIN?

THE WINNING TEST MUST BE...

NEEDED

Improve the antibiotic treatment decision of a globally occurring problem

AFFORDABLE

Affordable for purchase and use everywhere that it is needed

EASY TO USE

Can be used and interpreted anywhere in the world with minimal training

The benefits far outweigh any risks

ACCURATE

Eliminate harmful treatment decisions and give confidence to the user

RAPID

Sample collection to result in less than 30 minutes

CONNECTED (OPTIONAL)

Tests with data-recording and transmission will be favoured

A plan for full-scale manufacture and distribution

The winning test will help reduce unnecessary use of antibiotics and/or help medical professionals know which antibiotic to use when.

A Rapid Test for Gonorrhoea

				Cefixi	me or ceftriax	one			-	
				Azithro	mycin				-	
					Ciprofloxacin			•		
	Tetrac	cycline								
	Penicillin		-							
Sulfonamid	de									Brazil J Microbiol 2017
1930	1940	1950	1960	1970	1980	1990	2000	2010	2020	

- In the UK 33, 431 ceftriaxone treatments are given annually for gonorrhoea (2014)
- A modelling study showed that if a rapid test could detect:
 - GC + ciprofloxacin resistance, 66% of tx could be replaced by ciprofloxacin;
 - GC + penicillin resistance, 79% of current tx could be replaced by penicillin

Rapid AMR tests can reduce loss to follow up, extend the life of our current last-linetreatment, and is cost-savingRef: Turner KME, et al. BMJ Open 2017;7:e015447.

Sustainable Development Goals (SDGs): A Global Pledge to Leave No-One Behind

WHO Sustainable Development Goals. http://www.who.int/sdg/targets/en/

Plan of Presentation

- Why do we need rapid diagnostics?
 - Epidemic preparedness
 - Antimicrobial resistance
 - Improve access and health system efficiencies towards universal health care
- Performance and operational characteristics of rapid diagnostics: access vs accuracy
- **Diagnos**tics to revolutionise health care will require the convergence of:
 - biotechnology advances
 - digital technology
 - artificial intelligence and machine learning
 - Faster regulatory approval and policy development process
- The future is in our hands

ASSURED Tests to Improve Global Health

- A = Affordable
- S = Sensitive
- S = Specific
- U = User-friendly
- **R** = Rapid and robust
- E = Equipment-free
- D = Deliverable

- ✓ Affordability
- ✓ Accuracy
- ✓ Accessibility

Mabey D, Peeling RW, Ustianowski A, Perkins MD. Diagnostics for the developing world. Nature Rev Microbiol 2: 231-40, 2004.

Rapid Diagnostic Tests: Trade-Off between Access and Sensitivity

				• NO	test is	pertec	t		
Lab-NAT Lab-IA (CLIA/ECL/CLIA)	4	1 National Reference Center Senior laboratory specialists			 We need to weigh acceptable risks vs incremental clinical 				
Lab-NAT/POC-NAT/	Provincial/Regional Hosp		Regional Hospital	benefit					
Lab-IA (EIA/ECL/CLIA)	3	technicians		Access	Sensitivity				
					100	90	80	70	
POC-NAT and		District Hospital		100	100	90	80	70	
HCVCAg	2			90	90	(81)	72	63	
RDT)		Laborat	Laboratory technicians		80	72	64	56	
		Det		70	70	63	56	49	
DOT		Pri	mary Care	60	60	54	48	42	
RDI	1	He	althcare workers,	50	50	45	40	35	
				40	40	36	32	28	
			Community/Outreach	30	(30)	27	24	21	
RDT	$\mathbf{\cap}$		Community health	20	20	18	16	14	
	U		workers, lay providers	10	10	9	8	7	

CLIA, chemiluminescence immunoassay;

ECL, electrochemiluminescence immunoassay; EIA, enzyme immunoassay; Lab-NAT, laboratory-based; NAT, nucleic acid tests; POC-NAT, at point-of-care; RDT, rapid diagnostic test. WHO Guidelines on Hepatitis B and C Testing. Available at: http://apps.who.int/iris/bitstream/10665/254621/1/9789241549981-eng.pdf?ua=1 (accessed July 2018).

Diagnostics Methods: Ease of Detection vs Confidence in Diagnosis

Plan of Presentation

- Why do we need rapid diagnostics?
 - Epidemic preparedness
 - Antimicrobial resistance
 - Improve access and health system efficiencies towards universal health care
- **Performance and operational characteristics of rapid diagnostics:** access vs accuracy
- **Diagnos**tics to revolutionise health care will require the convergence of:
 - biotechnology advances
 - digital technology
 - artificial intelligence and machine learning
 - Faster regulatory approval and policy development process
- The future is in our hands

Explosion in Near-Patient Molecular Detection and Sequencing Technologies

Plug and play format:

- Minimal Hands on time
- Multiplex testing
- Rapid time to result
- Data transmission

Laksanasopin et al. Science Transl Med 2015:7:273

Priye, A. et al. A smartphonebased diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci Rep 2017;7:44778

Africa CDC: Can we leapfrog public health practice by building connected health systems?

- At the end of 2016, there were 420 million unique mobile subscribers in Sub-Saharan Africa, equivalent to a penetration rate of 43%.
- Phone adoption in Africa continues to grow faster than any other region of the world

Convergence of digital technology & POC LOND diagnostics: Strengthening Health Systems

Connectivity pilot in Zimbabwe

Testing data and proficiency panels results from 3 POC devices (Alere CD4, Cepheid GeneXpert TB and Rif resistance, and Hemocue) were sent real time to MOH central database in the office of the Chief of Lab Services

Gous N, Boeras DI, Cheng B, Takle J, Cunningham B, **Peeling RW**. <u>The impact of digital technologies on</u> <u>point-of-care diagnostics in resource-limited settings</u>. Expert Rev Mol Diagn. 2018 Apr;18(4):385-397.

Technology Convergence

Connected diagnostics can form the backbone of a health care system

Area	Novel Technologies	Web-enabled functions	
Outbreak	Social media alerts of possible	Electronic capture of epidemiological	
Identification	outbreaks	and clinical data	
	Syndromic surveillance	Multi source data capture for alerts	
Global health	- <u>Real time reporting to public</u>	Cluster 'hot spot' identification	
security and	health agencies through data		
disease	transmission from POC devices	Data visualisation based on geospatial	
control	- Transform <u>data into intelligence</u> to	and phylogenetic mapping for disease	
	inform control strategies	control and contact management	
	- Portable genetic sequencing of		
	samples to map resistance and	Real time monitoring of the	
	transmission patterns	effectiveness of interventions	
Health System	More efficient and effective use of	Automated report generation with	
Strengthening	clinics/patient /staff time	reduced transcription errors; quality of	
		testing validated through linking results	
		with proficiency panel testing;	
		automated supply chain management	

Future Directions: convergence of digital

Rapid Test results can be incorporated into electronic clinical decision support systems with decades of data on epidemiology of fever to improve patient management and reduce inappropriate antibiotic use:

Future Directions: convergence of digital LONDO diagnostic technology and artificial intelligence

Improving Patient Management through Electronic Decision Support

The Imperial Antibiotic Prescribing Policy (IAPP) smart phone app provides clinical decision support at the point of care to improve antimicrobial stewardship and appropriate prescribing:

o In	nperial College He	ealthcare NH NHS Trust
Infections	Drugs	Search
Calculate CrCl/Dose	Therapeutic Drug Monitoring	IV to Oral Switch Policy
Contact	Penicillin Allergy	Start Smart Then Focus

EE 3G	13:02	O 75% 💷
< Back	Imperial College	Healthcare NHS NHS Trust
O Penicillir	n Anaphylaxis	Elderly/Frail
Bone and	l Joint	
Central N	Iervous Systen	n
Gastroin	testinal Tract	
Genital T	'ract	
MRSA su	ppression ther	ару
Ophthalı	nic Infections	
Respirato	ory Tract	
Sepsis of	unknown cau	se
Skin and	Soft Tissue	

The Lab as a Command Centre

The lab serves as the Command Centre that can provide:

- Quality diagnostic services
- Training and proficiency testing at point-of-care testing sites
- surveillance and outbreak investigations
- Epidemiologic data for clinical decision support
- Research
- Implementation science for introducing novel technologies and interventions

Ref: Boeras DI, Nkengasong JN, Peeling RW. Implementation science: the laboratory as a command centre. Curr Opin HIV AIDS 2017: 12:171–174.

Urgent Need to Accelerate the Bench-to-Bedside Pathway

technological innovations to accelerate access to diagnostics

Urgent Need to Accelerate the Bench-to-Bedside LONDON Pathway for Novel Rapid test to be Put into Use

Progress towards IVD Regulatory Harmonization 2012-4

Grand Challenges Canada^{**} Grands Défis Canada^{**}

BOLD IDEAS FOR HUMANITY.™

Latin America Diagnostic Alliance (ALADDIV) (12 countries)

Pan-African Harmonization Working Party (15 countries)

Asia Harmonization Working Party (30 countries)

The Future is in Our Hands (1)

Promise of Rapid Diagnostics:

- Rapid tests that leverage digital technology with artificial intelligence and machine learning can:
 - provide clinical decision support at the point-of-care, improve patient management and have the potential to reduce inappropriate use of antibiotics
 - turn real-time surveillance and sequencing data into intelligence enabling:
 o earlier warning of infectious disease outbreaks
 - more evidence-based disease control strategies
 - o assessment of the impact of interventions
 - catalyse health system efficiencies, reducing number of patient visits, optimising supply chain management and improving patient outcomes

The Future is in Our Hands (2)

Challenges:

- When the decision to adopt new rapid diagnostics is made, it is important to understand the necessary infrastructure and skilled human resource needed to maintain these new diagnostic systems and ensure data quality and optimal usage
- Outbreaks cannot be prevented, but rapid diagnostics can facilitate a faster, smarter response leading to earlier quarantine and a dramatic reduction in the cost of each outbreak as well as impact on morbidity and mortality, but data quality, governance and security are critical in building stronger disease surveillance and intelligence networks
- Accelerating the Bench-to-Bedside pathway through regulatory harmonization and joint assessment of risk and benefit is critical for simple rapid tests to be available for epidemic preparedness, combating AMR and health system strengthening

Acknowledgement

LSHTM/IDC:

Noah Fongwen, Debra Boeras, Robert Luo, Joe Tucker, Priyanka Shrestha, Helen Kelly, Catherine Wedderburn, Ben Cheng, Philomena Raftery, Jack Butterworth, Hannah Miyanji, Adriana Goncalves, David Mabey

SystemOne: Brad Cunningham, Natasha Gous

Funding: Bill & Melinda Gates Foundation, Grand Challenges Canada, UNITAID, WHO, EU, UK EPSRC